(Following Paper ID and Roll No. to be filled in your Answer Book)									
PAPER ID: 1117	Roll No.								

B.Tech.

(SEM. I) ODD SEMESTER THEORY EXAMINATION 2013-14

ELECTRICAL ENGINEERING

Time: 3 Hours

Total Marks: 100

Note: - Attempt all Sections.

SECTION-A

1. Attempt all parts:

 $(10 \times 2 = 20)$

- (a) Define active and passive elements with example.
- (b) Define form factor and peak factor.
- (c) A series ckt has $R = 10 \Omega$, L = 0.05 H, $C = 10 \mu F$. Calculate O-factor of the ckt.
- (d) What is the significance of back emf in dc motor?
- (e) Why dc series motor is never started on no load?
- (f) Draw approximate equivalent ckt of transformer referred to primary side.
- (g) A 4-pole, 3-phase, 50 Hz, star connected Induction Motor has a full load slip of 4%. Calculate full load speed of motor.
- (h) Define mmf, reluctance, flux in magnetic circuit.
- (i) What are the applications of dc series and dc shunt motor?
- (j) Write an expression of hysteresis loss in a transformer. Why it decreases at higher frequencies with constant V?

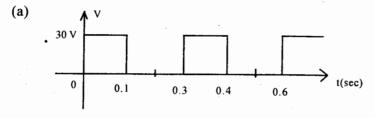
SECTION-B

2. Attempt any three parts:

 $(10 \times 3 = 30)$

(a) Derive emf equation for a single phase transformer. A 25 kVA, 2200/220 V. 50 Hz, 1-phase transformer has following parameters:

 R_1 = 1.75 Ω, R_2 = 0.0045 Ω, X_1 = 2.6 Ω, X_2 = 0.0075 Ω. Calculate :

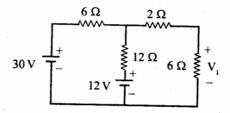

- (i) Equivalent resistance referred to primary and secondary.
- (ii) Equivalent reactance referred to primary and secondary.
- (b) Derive an expression for torque in dc motor. Draw the load characteristics of dc series and shunt motor.
- (c) Define series resonance and resonant frequency. Why in series ckt voltage across L and C is very high? Draw resonance curve.
- (d) Explain two wattmeter method to measure three phase power. If in a two wattmeter method, readings of two wattmeters are 1200 W and 300 W. Find the power factor of the load.
- (e) Describe the working principle and construction of single phase energy meter and its applications.

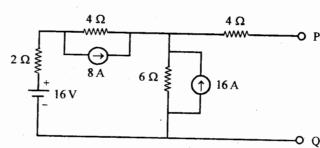
SECTION-C

Note: - Attempt all parts.

 $(10 \times 5 = 50)$

3. Attempt any two parts:




Find rms value, average value and form factor of the wave.

- (b) A 120 V, 100 W lamp is to be connected to a 220 V, 50 Hz ac supply. What value of pure inductance should be connected in series in order that lamp is run on the rated voltage?
- (c) Define resonance in parallel RLC ckt. Draw resonance curve.

4. Attempt any two parts:

- (a) State and prove maximum power transfer theorem in dc circuit.
- (b) Find the voltage V₁ across 6 ohm resistance using loop analysis method.

Find V_{th} and R_{th} for the ckt shown in figure.

5. Attempt any one part:

(c)

(a) Prove that in a 3-phase delta connected system $I_L = \sqrt{3} \ I_{ph}$. A 3-phase, 400 V supply is connected to a 3-phase star balanced load. The line current is 20 A and the power consumed by the load is 12 kW. Calculate the impedance of the load, phase current and power factor.

- (b) (i) A moving coil instrument having internal resistance of 50 Ω indicates full scale deflection with a current of 10 mA. How can it be made to work as:
 - (a) Voltmeter to read 100 Volts
 - (b) Ammeter to read 1 A on full scale?
 - (ii) Define analogy between electric and magnetic ckt.

6. Attempt any two parts:

- (a) Draw single line diagram of power system and explain.
- (b) Explain working principle of autotransformer. What are its advantages and applications?
- (c) What are different losses in transformer? Explain.

7. Attempt any one part:

- (a) Why single phase induction motor is not self starting? What are the methods of starting? Explain any one of them which is used in fan.
- (b) (i) A 5 H.P., 230 V, 50 Hz induction motor has a rated full load speed of 950 rpm. The induced voltage per phase of rotor at standstill is 100 V. Calculate:
 - (a) No. of poles and % full load slip.
 - (b) Rotor induced voltage and its frequency at full load.
 - (ii) Explain working principle of synchronous motor and two applications.